(1)

(a) Obtuse $\angle A O B=360^{\circ}-280^{\circ}$

$$
=80^{\circ}
$$

$\therefore \quad \angle A C B=\frac{1}{2} \angle A O B$ (\angle at centre $=$ twice \angle at circum.)

$$
=\frac{1}{2}\left(80^{\circ}\right)
$$

$$
=40^{\circ}
$$

(b) $\angle B A C=\angle A B C(A C=B C)$

$$
\therefore \quad \angle B A C=\frac{1}{2}\left(180^{\circ}-40^{\circ}\right)
$$

$$
=70^{\circ}
$$

$\angle B A O=\angle A B O$ (OA and $O B$ are radii)
$\therefore \angle B A O=\frac{1}{2}\left(180^{\circ}-80^{\circ}\right)$
$=50^{\circ}$
$\therefore \angle O A C=\angle B A C-\angle B A O$
$=70^{\circ}-50^{\circ}$
$=20^{\circ}$
(c) $\angle O A G=90^{\circ}$ (radius \perp tangent)
$\therefore \angle G A C=90^{\circ}-\angle O A C$
$=90^{\circ}-20^{\circ}$
$=70^{\circ}$
$\angle G A C=\angle G C A(A G=C G=$ tangents $)$
$\therefore \angle A G C=180^{\circ}-\left(70^{\circ}+70^{\circ}\right)$

$$
=40^{\circ}
$$

